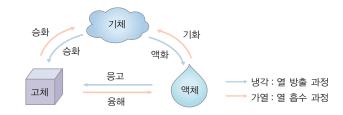
중1 과학 Î 단원별 도표·그림 자료 01



.물질의 세 가지 상태

▶ 온도에 따른 상태 변화

▶ 물질의 상태 변화의 종류

▶ 물질의 상태와 분자 배열

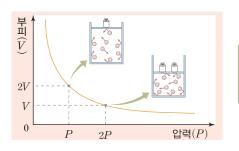
상태	고체	액체	기체
분자 배열 모형			
교실에 비유한 분자 배열	수업 시간	쉬는 시간	방과후

.분자의 운동

▶ 물질의 상태와 분자 운동

상태	고체	액체	기체
모형			
분자 운동	제자리에서 진동 운동	비교적 자유롭게 운동	매우 활발하게 운동

▶ 증발과 끓음의 비교


구분	일어나는 곳	일어나는 온도	상태 변화	모형
증발	액체 표면	모든 온도	기화	10 10 10
끓음	액체 전체	끓는점 이상의 온도	기화	

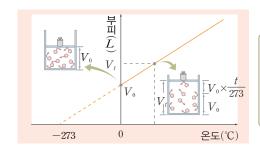
▶ 압력에 따른 기체의 부피 변화

- 기체의 압력 :(개) <(나)
- 추의 무게 :(개) <(나)
- 기체 분자의 수 :(개) =(나)
- 기체의 부피 :(개) >(나)
- 기체 분자의 충돌 횟수 :(개) <(나)

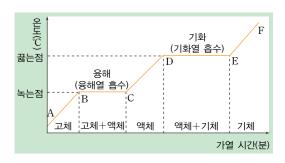
▶ 보일 법칙

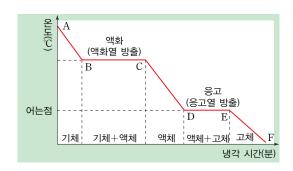
압력 $(P) \times$ 부피(V) = 일정 $P_1 \times V_1 = P_2 \times V_2$

▶ 온도에 따른 기체의 부피 변화



- 기체의 온도 :(개) <(내)
- 기체의 부피 :(개) <(나)
- 기체 분자의 수 :(개) =(내)
- 기체 분자의 운동 속도 :(개) <(나)
- 기체 분자의 충돌 횟수 :(개) <(나)


▶ 샤를 법칙

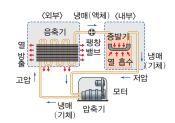

$$V_t = V_0 + V_0 \times \frac{t}{273}$$

= $V_0 \times (1 + \frac{t}{273})$

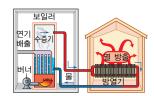
.상태 변화와 열에너지

▶ 상태 변화와 온도

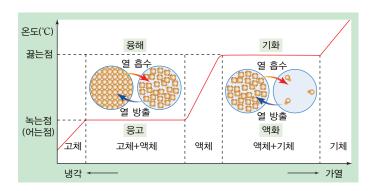
- AB, CD, EF 구간 : 흡수한 열에너지가 온도를 높이는 데 이용
- BC, DE 구간: 흡수한 열에너지가 모두 상태 변화에 이용되므로 온도가 일정



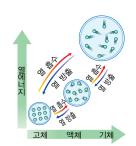
- AB, CD, EF 구간 : 냉각하므로 온도가 낮아짐
- BC, DE 구간: 상태 변화하면서 열에너지를 방출하므로 온도가 일정


【 딜원별 도표·그림 자료 「02 중1

▶ 냉장고와 스팀 난방의 원리



- 증발기 : 액체 냉매 → 기체 냉매(기화 열 흡수) → 냉장고 안의 온도가 낮아
- 응축기 : 기체 냉매 → 액체 냉매(액화열



- 보일러 : 물 → 수증기(기화열 흡수)
- 방열기: 수증기 → 물(액화열 방출)
- → 실내 온도가 높아짐

▶ 상태 변화와 열에너지

▶ 열에너지에 의한 분자 운동과 부피의 변화

- 열에너지를 얻음 → 분자 운동이 활발 해짐 → 인력 감소 → 분자 사이의 거 리가 멀어짐
- 열에너지를 잃음 → 분자 운동이 둔해 짐 → 인력 증가 → 분자 사이의 거리 가 가까워짐
- 일반적인 물질의 상태에 따른 부피 → 고체 〈액체 〈기체 순으로 증가

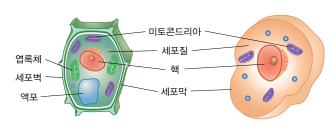
근육 세포

.생물의 구성과 다양성

▶ 현미경의 구조와 렌즈

▶ 식물과 동물의 구성 단계

근육 조직



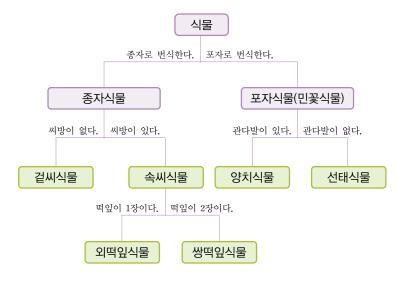
위(소화 기관)

▲ 동물의 구성 단계

소화계

▶ 식물 세포와 동물 세포

▲ 식물 세포


▲ 동물 세포

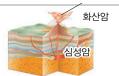
구분	식물 세포	동물 세포
차이점	 세포벽이 있어서 세포의 형태를 유지시켜 준다. 엽록체가 있어 광합성을 한다. 액포가 발달해 있다. 세포의 모양이 규칙적인 육각형이다. 	 세포벽, 엽록체가 없다. 액포가 거의 발달되어 있지 않다. 세포의 모양이 불규칙적인 둥근 모양이다.
공통점	핵, 세포질, 세포막, 미토콘드리아가 있다.	

▶ 동물의 분류

▶ 식물의 분류

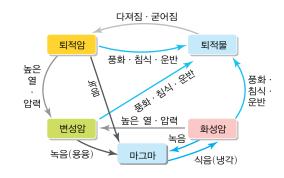
.지각의 물질과 변화

▶ 지각의 8대 구성 원소


산소>규소>알루미늄>철>칼슘>나트 륨>칼륨>마그네슘

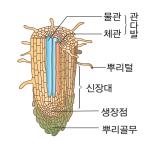
중1 과학 Î 단원별 도표·그림 자료 03

▶ 화성암의 분류


구분	화산암	심성암	
생성 위치	지표 부근	지하 깊은 곳	No Francis
냉각 속도	빠르다	느리다	
결정 크기	작다(세립질)	크다(조립질)	27.24

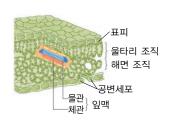
▶ 변성암의 종류

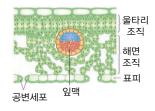
원래 암석		낮다 ←	변성암 열과 압력		→ 높다
퇴적암	셰일 사암 석회암	점판암	→ 편암	→	편마암 규암 대리암
화성암	화강암 현무암		→ 녹색 편암	→	편마암 각섬암


▶ 암석의 순환

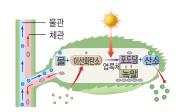
.식물의 영양

▶ 식물 뿌리의 구조





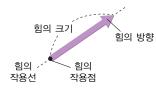
▶ 쌍떡잎식물과 외떡잎식물의 줄기 비교


외떡잎식물
물관 체관
형성층 없다
관다발 배열이 불규칙적
나란히맥
떡잎 1장
수염뿌리
벼, 보리, 옥수수, 백합 등

▶ 식물 잎의 구조

▶ 광합성

이산화탄소+물 <u>및에너지</u> 엽록체 포도당+산소

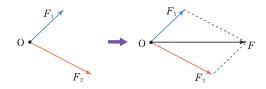

▶ 하루 동안 식물의 기체 교환

낮	아침 · 저녁	밤
강한 빛 이산화탄소 상합성 호흡	약한 빛 광합성 이산화탄소 ^{호흡} 산소	이산화탄소 ^{호흡} 산소
 광합성량>호흡량 이산화탄소 흡수, 산소 방출 	광합성량=호흡량 외관상 기체의 출입이 없음	 호흡만 일어남 산소 흡수, 이산화탄소 방출

.힘의 표시와 합성

▶ 힘의 표시

힘의 3요소	화살표 표시	뜻
힘의 크기	화살표의 길이	작용한 힘의 크기
힘의 방향	화살표의 방향	작용한 힘의 방향
힘의 작용점	화살표의 시작점	물체에 힘이 작용한 점


▶ 나란하게 작용하는 두 힘의 합성

구분	같은 방향으로 작용하는 두 힘	반대 방향으로 작용하는 두 힘
합력의 크기	두 힘의 크기를 더한 값 $F{=}F_{1}{+}F_{2}$	큰 힘에서 작은 힘의 크기를 뺀 값 $F = F_1 - F_2$ (단, $F_1 > F_2$)
합력의 방향	두 힘(F1, F2)의 방향	큰 힘 F_1 의 방향
합성 방법	F_1 F_2 F_2 F_1 F_2 F_2 $F=F_1+F_2$ 이 힘의 작용점	F_2 이 F_1 F_1 F_2 F_2 F_2 F_1 F_2 F_2 F_2 F_2 F_2 F_1 F_2 F_2 F_2 F_2 F_2 F_3 F_4 F_2 F_3 F_4 F

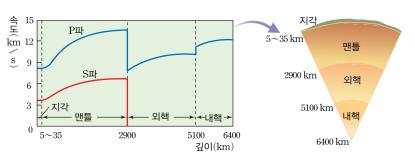
중1 과학 T 단원별 도표·그림 자료 04

▶ 나란하지 않게 작용하는 두 힘의 합성

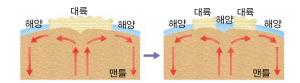
두 $\mathrm{nl}(F_1,F_2)$ 을 이웃한 두 변으로 하는 평행사변형의 대각선이 두 힘의 합력(F)을 나타낸다.

▶ 방향이 변하는 운동

방향만 변하는 운동	속력과 방향이 모두 변하는 운동		
등속 원운동	포물선 운동	진자의 운동	
구심력 무심력 양향 중심 방향	운동	A 전폭 진폭 진폭	
속력:항상 일정운동 방향:원의 접 선 방향이며,계속 변함	소력: 올라갈 때는 일 정하게 감소, 내려올 때는 일정하게 증가 운동 방향: 포물선 방향이며, 계속 변함	 속력: 중심점(O)에서 최대, 양 끝점(A,B)에서 최소 운동 방향: 이동 경로의 접선 방향이며계속 변함 	



.지각 변동과 판 구조론


▶ 지진파의 종류

구분	P파	S파
진행 모습	진행 방향 진원 ////////////////////////////////////	진행 방향 진원 진동 방향
속도	빠르다(7~8 km/s)	느리다(3~4 km/s)
통과 물질	고체, 액체, 기체 모두 통과	고체만 통과
진동 방향	진행 방향과 같음(종파)	진행 방향과 수직(횡파)
피해 정도	비교적 작다	비교적 크다

▶ 지진파의 속도 변화와 지구 내부의 구조

▶ 맨틀 대류설(홈스)


▶ 해저 확장설(헤스와 디츠)

▶ 단층의 종류

구분	정단층	역단층
작용하는 힘	양쪽에서 잡아당기는 힘(장력) 에 의해 상반이 아래로 미끄러 져 내려간 단층	양쪽에서 미는 힘(횡압력)에 의해 상반이 위로 밀려 올라간 단층
형태	하반 상반	하반 상반

▶ 부정합의 형성 과정

.정전기

▶ 원자의 구조

구분	원자핵	전자
전기적 상태	(+)전하를 띰	(一)전하를 띰
특징	원자의 중심에 위치하며, 무 거워서 쉽게 움직이지 못함	원자핵 둘레를 돌고 있으며, 가벼워서 자유롭게 움직임

▶ 정전기 유도

▶ 검전기를 한 종류의 전기로 대전시키는 방법

